
Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1104 | P a g e

FAULT TOLERANT MECHANISMS FOR EFFICIENT DATA

RECOVERY IN GRID ENVIRONMENT

Saritha.G, MTech(SE)

Abstract: Large clusters, high availability clusters and grid deployments often suffer from network, node or

operating system faults and thus require the use of fault tolerant programming models. Distributed systems today

are ubiquitous and enable many applications, including client-server systems, transaction processing, World

Wide Web, and scientific computing, among many others. The vast computing potential of these systems is often

hampered by their susceptibility to failures. Therefore, many techniques have been developed to add reliability

and high availability to distributed systems. This paper presents two such techniques: Checkpointing Based

Rollback and Log Based Rollback which allows efficient recovery in dynamic heterogeneous system as well as

multithreaded applications.

Keywords: grid computing, fault tolerance, rollback recovery, checkpointing, event logging.

INTRODUCTION
Rollback recovery treats a distributed system as a

collection of application processes that communicate

through a network. Fault tolerance is achieved by

periodically using stable storage to save the

processes’ states during failure-free execution. Upon

a failure, a failed process restarts from one of its

saved states, thereby reducing the amount of lost

computation. Each of the saved states is called a

checkpoint.

Rollback recovery has many flavors. For example, a

system may rely on the application to decide when

and what to save on stable storage. Or, it may

provide the application programmer with linguistic

constructs to structure the application. We focus in

this survey on transparent techniques, which do not

require any intervention on the part of the application

or the programmer. The system automatically takes

checkpoints according to some specified policy, and

recovers automatically from failures if they occur.

This approach has the advantages of relieving the

application programmers from the complex and

error-prone chores of implementing fault tolerance

and of offering fault tolerance to existing applications

written without consideration to reliability concerns.

Rollback recovery has been studied in various forms

and in connection with many fields of research.

Thus, it is perhaps impossible to provide an extensive

coverage of all the issues related to rollback recovery

within the scope of one article. This survey

concentrates on the definitions, fundamental

concepts, and implementation issues of rollback-

recovery protocols in distributed systems. The

coverage excludes the use of rollback recovery in

many related fields such hardware-level instruction

retry, distributed shared memory, real-time systems,

and debugging. The coverage also excludes the

issues of using rollback recovery when failures could

include Byzantine modes or are not restricted to the

fail-stop model. Also excluded are rollback-recovery

techniques that rely on special language constructs

such as recovery blocks and transactions.

Message-passing systems complicate rollback

recovery because messages induce inter-process

dependencies during failure-free operation. Upon a

failure of one or more processes in a system, these

dependencies may force some of the processes that

did not fail to roll back, creating what is commonly

called rollback propagation . To see why rollback

propagation occurs, consider the situation where a

sender of a message m rolls back to a state that

precedes the sending of m . The receiver of m must

also roll back to a state that precedes m ’s receipt;

otherwise, the states of the two processes would be

inconsistent because they would show that message

m was received without being sent, which is

impossible in any correct failure-free execution.

Under some scenarios, rollback propagation may

extend back to the initial state of the computation,

losing all the work performed before a failure. This

situation is known as the domino effect [4].

The domino effect may occur if each process takes its

checkpoints independently—an approach known as

independent or uncoordinated checkpointing . It is

obviously desirable to avoid the domino effect and

Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1105 | P a g e

therefore several techniques have been developed to

prevent it. One such technique is to perform

coordinated checkpointing in which processes

coordinate their checkpoints in order to save a

system-wide consistent state [8]. This consistent set

of checkpoints can then be used to bound rollback

propagation. Alternatively, communication-induced

checkpointing forces each process to take

checkpoints based on information piggybacked on

the application messages it receives from other

processes. Checkpoints are taken such that a system-

wide consistent state always exists on stable storage,

thereby avoiding the domino effect.

These approaches discussed above implement

checkpoint-based rollback recovery, which relies

only on checkpoints to achieve fault-tolerance. In

contrast, log-based rollback recovery combines

checkpointing with logging of nondeterministic

events. Log-based rollback recovery relies on the

piecewise deterministic (PWD) assumption [2],

which postulates that all nondeterministic events that

a process executes can be identified and that the

information necessary to replay each event during

recovery can be logged in the event’s determinant

[4]. By logging and replaying the nondeterministic

events in their exact original order, a process can

deterministically recreate its pre-failure state even if

this state has not been checkpointed. Log-based

rollback recovery in general enables a system to

recover beyond the most recent set of consistent

checkpoints. It is therefore particularly attractive for

applications that frequently interact with the outside

world , which consists of all input and output devices

that cannot roll back. Log-based rollback recovery

has three flavors, depending on how the determinants

are logged to stable storage. In pessimistic logging ,

the application has to block waiting for the

determinant of each nondeterministic event to be

stored on stable storage before the effects of that

event can be seen by other processes or the outside

world. Pessimistic logging simplifies recovery but

hurts failure-free performance. In optimistic

logging, the application does not block, and

determinants are spooled to stable storage

asynchronously. Optimistic logging reduces the

failure-free overhead, but complicates recovery.

Finally, in causal logging, low failure-free overhead

and simpler recovery are combined by striking a

balance between optimistic and pessimistic logging.

2. RELATED WORK

2.1 System Model:

A message-passing system consists of a fixed number

of processes that communicate only through

messages. Throughout this survey, we use N to

denote the total number of processes in a system.

Processes cooperate to execute a distributed

application program and interact with the outside

world by receiving and sending input and output

messages, respectively. Figure 1 shows a sample

system consisting of three processes, where

horizontal lines extending toward the right-hand side

represent the execution of each process, and arrows

between processes represent messages.

2.2 Consistent system states

A global state of a message-passing system is a

collection of the individual states of all participating

processes and of the states of the communication

channels. Intuitively, a consistent global state is one

that may occur during a failure-free, correct

execution of a distributed computation. More

precisely, a consistent system state is one in which if

a process’s state reflects a message receipt, then the

state of the corresponding sender reflects sending that

message. For example, Figure 2 shows two examples

of global states—a consistent state in Figure 2(a), and

an inconsistent state in Figure 2(b). Note that the

consistent state in Figure 2(a) shows message m1 to

have been sent but not yet received. This state is

consistent, because it represents a situation in which

the message has left the sender and is still traveling

across the network. On the other hand, the state in

Figure 2(b) is inconsistent because process P2 is

shown to have received m2 but the state of process

P1 does not reflect sending it. Such a state is

impossible in any failure-free, correct computation.

Inconsistent states occur because of failures. For

example, the situation shown in part (b) of Figure 2

may occur if process P1 fails after sending message

m2 to P2 and then restarts at the state shown in the

figure.A fundamental goal of any rollback-recovery

Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1106 | P a g e

protocol is to bring the system into a consistent state

when inconsistencies occur because of a failure. The

reconstructed consistent state is not necessarily one

that has occurred before the failure. It is sufficient

that the reconstructed state be one that could have

occurred before the failure in a failure-free, correct

execution.

2.3 In-Transit Messages

In Figure 2(a), the global state shows that message

m1 has been sent but not yet received. We call such

a message an in-transit message. When in-transit

messages are part of a global system state, these

messages do not cause any inconsistency. However,

depending on whether the system model assumes

reliable communication channels, rollback-recovery

protocols may have to guarantee the delivery of in-

transit messages when failures occur. For example,

the rollback-recovery protocol in Figure 3(a) assumes

reliable communications, and therefore it must be

implemented on top of a reliable communication

protocol layer. In contrast, the rollback-recovery

protocol in Figure 3(b) does not assume reliable

communications.

Reliable communication protocols ensure the

reliability of message delivery during failure-free

executions. They cannot, however, ensure by

themselves the reliability of message delivery in the

presence of process failures. For instance, if an in-

transit message is lost because the intended receiver

has failed, conventional communication protocols

will generate a timeout and inform the sender that the

message cannot be delivered. In a rollback-recovery

system, however, the receiver will eventually

recover. Therefore, the system must mask the

timeout from the application program at the sender

process and must make in-transit messages available

to the intended receiver process after it recovers, in

order to ensure a consistent view of the reliable

system . On the other hand, if a system

Figure3:

model assumes unreliable communication channels,

as in Figure 3(b), then the recovery protocol need not

handle in-transit messages in any special way.

Indeed, lost in-transit messages because of process

failures cannot be distinguished from those caused by

communication failures in an unreliable

communication channel. Therefore, the loss of in-

transit messages due to either communication or

process failure is an event that can occur in any

failure-free, correct execution of the system.

2.4 Checkpointing Protocols and the Domino

Effect

In checkpointing protocols, each process periodically

saves its state on stable storage. The saved state

contains sufficient information to restart process

execution. A consistent global checkpoint is a set of

N local checkpoints, one from each process, forming

a consistent system state. Any consistent global

checkpoint can be used to restart process execution

upon a failure. Nevertheless, it is desirable to

minimize the amount of lost work by restoring the

system to the most recent consistent global

checkpoint, which is called the recovery line [4][5].

Processes may coordinate their checkpoints to form

consistent states, or may take checkpoints

independently and search for a consistent state during

recovery out of the set of saved individual

checkpoints. The second style, however, can lead to

the domino effect [4]. For example, Figure 4 shows

an execution in which processes take their

checkpoints—represented by black bars—without

coordinating with each other. Each process starts its

execution with an initial checkpoint. Suppose

process P2 fails and rolls back to checkpoint C. The

rollback “invalidates” the sending of message m6,

and so P1 must roll back to checkpoint B to

“invalidate” the receipt of that message. Thus, the

invalidation of message m 6 propagates the rollback

of process P2 to process P1, which in turn

Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1107 | P a g e

“invalidates” message m7 and forces P0 to roll back

as well.

Figure4:

This cascaded rollback may continue and eventually

may lead to the domino effect, which causes the

system to roll back to the beginning of the

computation, in spite of all the saved checkpoints. In

the example shown in Figure 5, cascading rollbacks

due to the single failure of process P2 may result in a

recovery line that consists of the initial set of

checkpoints, effectively causing the loss of all the

work done by all processes. To avoid the domino

effect, processes need either to coordinate their

checkpoints so that the recovery line is advanced as

new checkpoints are taken, or to combine

checkpointing with event logging.

2.5 Logging Protocols:

Log-based rollback recovery uses checkpointing and

logging to enable processes to replay their execution

after a failure beyond the most recent checkpoint.

This is useful when interactions with the outside

world are frequent, since it enables a process to

repeat its execution and be consistent with output

sent to the outside world without having to take

expensive checkpoints before sending such output.

Additionally, log-based recovery generally is not

susceptible to the domino effect, thereby allowing

processes to use uncoordinated checkpointing if

desired.

Log-based recovery relies on the piecewise

deterministic (PWD) assumption. Under this

assumption, the rollback recovery protocol can

identify all the nondeterministic events executed by

each process, and for each such event, logs a

determinant that contains all information necessary to

replay the event should it be necessary during

recovery.

A state interval is recoverable if there is sufficient

information to replay the execution up to that state

interval despite any future failures in the system.

Also, a state interval is stable if the determinant of

the nondeterministic event that started it is logged on

stable storage [1]. A recoverable state interval is

always stable, but the opposite is not always true [8].

Figure 5 shows an execution in which the only

nondeterministic events are message deliveries.

Suppose that processes P 1 and P2 fail before logging

the determinants corresponding to the deliveries of

m6 and m5, respectively, while all other

determinants survive the failure. Message m7

becomes an orphan message because process P2

cannot guarantee the regeneration of the same m6

during recovery, and P1 cannot guarantee the

regeneration of the same m7 without the original m6.

As a result, the surviving process P0 becomes an

orphan process and is forced to roll back

 Figure 5:

as well. States X , Y and Z form the maximum

recoverable state [8], i.e., the most recent recoverable

consistent system state. Processes P0 and P2 roll

back to checkpoints A and C, respectively, and

replay the deliveries of messages m4 and m2,

respectively, to reach states X and Z. Process P1

rolls back to checkpoint B and replays the deliveries

of m1 and m3 in their original order to reach state

Y. During recovery, log-based rollback-recovery

protocols force the execution of the system to be

identical to the one that occurred before the failure,

up to the maximum recoverable state. Therefore, the

system always recovers to a state that is consistent

with the input and output interactions that occurred

up to the maximum recoverable state.

2.6 Checkpoint-Based Rollback Recovery

Upon a failure, checkpoint-based rollback recovery

restores the system state to the most recent consistent

set of checkpoints, i.e. the recovery line [4][5]. It

does not rely on the PWD assumption, and so does

not need to detect, log, or replay nondeterministic

Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1108 | P a g e

events. Checkpoint-based protocols are therefore less

restrictive and simpler to implement than log-based

rollback recovery. But checkpoint-based rollback

recovery does not guarantee that pre-failure

execution can be deterministically regenerated after a

rollback. Therefore, checkpoint-based rollback

recovery is ill suited for applications that require

frequent interactions with the outside world, since

such interactions require that the observable behavior

of the system during recovery be the same as during

failure-free operation.

Checkpoint-based rollback-recovery techniques can

be classified into three categories: uncoordinated

checkpointing , coordinated checkpointing , and

communication-induced checkpointing. We examine

each category in detail.

2.6.1 Uncoordinated Checkpointing
Uncoordinated checkpointing allows each process

maximum autonomy in deciding when to take

checkpoints. The main advantage of this autonomy is

that each process may take a checkpoint when it is

most convenient. For example, a process may reduce

the overhead by taking checkpoints when the amount

of state information to be saved is small [5]. But

there are several disadvantages. First, there is the

possibility of the domino effect, which may cause the

loss of a large amount of useful work, possibly all the

way back to the beginning of the computation.

Second, a process may take a useless checkpoint that

will never be part of a global consistent state.

Useless checkpoints are undesirable because they

incur overhead and do not contribute to advancing

the recovery line. Third, uncoordinated

checkpointing forces each process to maintain

multiple checkpoints, and to invoke periodically a

garbage collection algorithm to reclaim the

checkpoints that are no longer useful. Fourth, it is

not suitable for applications with frequent output

commits because these require global coordination to

compute the recovery line, negating much of the

advantage of autonomy.

2.6.2 Coordinated Checkpointing

Coordinated checkpointing requires processes to

orchestrate their checkpoints in order to form a

consistent global state. Coordinated checkpointing

simplifies recovery and is not susceptible to the

domino effect, since every process always restarts

from its most recent checkpoint. Also, coordinated

checkpointing requires each process to maintain only

one permanent checkpoint on stable storage, reducing

storage overhead and eliminating the need for

garbage collection. Its main disadvantage, however,

is the large latency involved in committing output,

since a global checkpoint is needed before output can

be committed to the outside world.

A straightforward approach to coordinated

checkpointing is to block communications while the

checkpointing protocol executes [2]. A coordinator

takes a checkpoint and broadcasts a request message

to all processes, asking them to take a checkpoint.

When a process receives this message, it stops its

execution, flushes all the communication channels,

takes a tentative checkpoint, and sends an

acknowledgment message back to the coordinator.

After the coordinator receives acknowledgments

from all processes, it broadcasts a commit message

that completes the two-phase checkpointing protocol.

After receiving the commit message, each process

removes the old permanent checkpoint and

atomically makes the tentative checkpoint permanent.

The process is then free to resume execution and

exchange messages with other processes. This

straightforward approach, however, can result in

large overhead, and therefore non-blocking

checkpointing schemes are preferable [8][7].

2.6.3 Communication-induced Checkpointing

Communication-induced checkpointing avoids the

domino effect while allowing processes to take some

of their checkpoints independently [8]. However,

process independence is constrained to guarantee the

eventual progress of the recovery line, and therefore

processes may be forced to take additional

checkpoints. The checkpoints that a process takes

independently are called local checkpoints, while

those that a process is forced to take are called forced

checkpoints. Communication-induced checkpointing

piggybacks protocol-related information on each

application message. The receiver of each application

message uses the piggybacked information to

determine if it has to take a forced checkpoint to

advance the global recovery line. The forced

checkpoint must be taken before the application may

process the contents of the message, possibly

incurring high latency and overhead. It is therefore

desirable in these systems to reduce the number of

forced checkpoints to the extent possible. In contrast

with coordinated checkpointing, no special

coordination messages are exchanged.

Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1109 | P a g e

2.7 Log-Based Rollback Recovery

As opposed to checkpoint-based rollback recovery,

log-based rollback recovery makes explicit use of the

fact that a process execution can be modeled as a

sequence of deterministic state intervals, each starting

with the execution of a nondeterministic event [7].

Such an event can be the receipt of a message from

another process or an event internal to the process.

Log-based rollback-recovery protocols guarantee that

upon recovery of all failed processes, the system does

not contain any orphan process, i.e., a process whose

state depends on a nondeterministic event that cannot

be reproduced during recovery. The way in which a

specific protocol implements this condition affects

the protocol’s failure-free performance overhead,

latency of output commit, and simplicity of recovery

and garbage collection, as well as its potential for

rolling back correct processes. There are three flavors

of these protocols:

 Pessimistic log-based rollback-recovery

protocols guarantee that orphans are never

created due to a failure. These protocols

simplify recovery, garbage collection and

output commit, at the expense of higher

failure-free performance overhead.

 Optimistic log-based rollback-recovery

protocols reduce the failure-free

performance overhead, but allow orphans to

be created due to failures. The possibility of

having orphans complicates recovery,

garbage collection and output commit.

 Causal log-based rollback-recovery

protocols attempt to combine the advantages

of low performance overhead and fast output

commit, but they may require complex

recovery and garbage collection.

2.8 Combining Log-Based Recovery with

Coordinated Checkpointing

Log-based recovery has been traditionally presented

as a mechanism to allow the use of uncoordinated

checkpointing with no domino effect. But a system

may also combine event logging with coordinated

checkpointing, yielding several benefits with respect

to performance and simplicity [2][4]. These benefits

include those of coordinated checkpointing—such as

the simplicity of recovery and garbage collection—

and those of logbased recovery—such as fast output

commit. Most prominently, this combination obviates

the need for flushing the volatile message logs to

stable storage in a sender-based logging

implementation. Thus, there is no need for

maintaining large logs on stable storage, resulting

lower performance overhead and simpler

implementations. The combination of coordinated

checkpointing and message logging has been shown

to outperform one with uncoordinated checkpointing

and message logging [2]. Therefore, the purpose of

logging should no longer be to allow uncoordinated

checkpointing. Rather, it should be the desire for

enabling fast output commit for those applications

that need this feature.

3 Conclusion
We have reviewed and compared different

approaches to rollback recovery with respect to a set

of properties including the assumption of piecewise

determinism, performance overhead, storage

overhead, ease of output commit, ease of garbage

collection, ease of recovery, freedom from domino

effect, freedom from orphan processes, and the extent

of rollback. These approaches fall into two broad

categories: checkpointing protocols and log-based

recovery protocols.

Checkpointing protocols require the processes to take

periodic checkpoints with varying degrees of

coordination. At one end of the spectrum,

coordinated checkpointing requires the processes to

coordinate their checkpoints to form global consistent

system states. Coordinated checkpointing generally

simplifies recovery and garbage collection, and yields

good performance in practice. At the other end of the

spectrum, uncoordinated checkpointing does not

require the processes to coordinate their checkpoints,

but it suffers from potential domino effect,

complicates recovery, and still requires coordination

to perform output commit or garbage collection.

Between these two ends are communication-induced

checkpointing schemes that depend on the

communication patterns of the applications to trigger

checkpoints. These schemes do not suffer from the

domino effect and do not require coordination.

Recent studies, however, have shown that the

nondeterministic nature of these protocols

complicates garbage collection and degrades

performance.

Log-based rollback recovery based on the PWD

assumption is often a natural choice for applications

that frequently interact with the outside world. Log-

based recovery allows efficient output commit, and

has three flavors, pessimistic, optimistic, and causal.

Saritha. G / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1104-1110

1110 | P a g e

The simplicity of pessimistic logging makes it

attractive for practical applications if a high failure-

free overhead can be tolerated. This form of logging

simplifies recovery, output commit, and protect

surviving processes from having to roll back. These

advantages have made pessimistic logging attractive

in commercial environment where simplicity and

robustness are necessary. Causal logging can be

employed to reduce the overhead while still

preserving the properties of fast output commit and

orphan-free recovery. Alternatively, optimistic

logging reduces the overhead further at the expense

of complicating recovery and increasing the extent of

rollback upon a failure.

REFERENCES:
[1] L. Sarmenta, “Sabotage-Tolerance Mechanisms for

Volunteer Computing Systems,” Future Generation

Computer Systems, vol. 18, no. 4, 2002.

[2] L. Alvisi and K. Marzullo, “Message Logging:

Pessimistic, Optimistic, Causal and Optimal,” IEEE Trans.

Software Eng., vol. 24, no. 2, pp. 149-159, Feb. 1998.

[3] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth,

“Solving Large Quadratic Assignment Problems on

Computational Grids,” Math. Programming, vol. 91, no. 3,

2002.

[4] R. Baldoni, “A Communication-Induced Checkpointing

Protocol That Ensures Rollback-Dependency Trackability,”

Proc. 27th Int’l Symp. Fault-Tolerant Computing (FTCS

’97), p. 68, 1997

[5] G. Stellner, “CoCheck: Checkpointing and Process

Migration for MPI,” Proc. 10th Int’l Parallel Processing

Symp. (IPPS ’96), pp. 526-531, Apr. 1996

[6] F. Galile´e, J.-L. Roch, G. Cavalheiro, and M. Doreille,

“Athapascan- 1: On-Line Building Data Flow Graph in a

Parallel Language,” Proc. Seventh Int’l Conf. Parallel

Architectures and Compilation Techniques (PACT ’98), pp.

88-95, 1998.

[7] D.K. Pradhan, Fault-Tolerant Computer System Design.

Prentice Hall, 1996.

[8] Samir Jafar, Axel Krings, Senior Member, IEEE, and

Thierry Gautier. Flexible Rollback Recovery in Dynamic

Heterogeneous Grid Computing, In IEEE transactions

on dependable and secure computing, vol. 6, no. 1,

january-march 2009

