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Abstract: Large clusters, high availability clusters and grid deployments often suffer from network, node or 

operating system faults and thus require the use of fault tolerant programming models. Distributed systems today 

are ubiquitous and enable many applications, including client-server systems, transaction processing, World 

Wide Web, and scientific computing, among many others. The vast computing potential of these systems is often 

hampered by their susceptibility to failures. Therefore, many techniques have been developed to add reliability 

and high availability to distributed systems. This paper presents two such techniques: Checkpointing Based 

Rollback and Log Based Rollback which allows efficient recovery in dynamic heterogeneous system as well as 

multithreaded applications. 
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INTRODUCTION 
Rollback recovery treats a distributed system as a 

collection of application processes that communicate 

through a network.  Fault tolerance is achieved by 

periodically using stable storage to save the 

processes’ states during failure-free execution.  Upon 

a failure, a failed process restarts from one of its 

saved states, thereby reducing the amount of lost 

computation.  Each of the saved states is called a 

checkpoint.  

Rollback recovery has many flavors.  For example, a 

system may rely on the application to decide when 

and what to save on stable storage.  Or, it may 

provide the application programmer with linguistic 

constructs to structure the application.  We focus in 

this survey on  transparent  techniques, which do not 

require any intervention on the part of the application 

or the programmer.  The system automatically takes 

checkpoints according to some specified policy, and 

recovers automatically from failures if they occur.  

This approach has the advantages of relieving the 

application programmers from the complex and 

error-prone chores of implementing fault tolerance 

and of offering fault tolerance to existing applications 

written without consideration to reliability concerns.  

Rollback recovery has been studied in various forms 

and in connection with many fields of research.  

Thus, it is perhaps impossible to provide an extensive 

coverage of all the issues related to rollback recovery 

within the scope of one article.  This survey 

concentrates on the definitions, fundamental 

concepts, and implementation issues of rollback-

recovery protocols in distributed systems.  The 

coverage excludes the use of rollback recovery in 

many related fields such hardware-level instruction 

retry, distributed shared memory, real-time systems, 

and debugging.  The coverage also excludes the 

issues of using rollback recovery when failures could 

include Byzantine modes or are not restricted to the 

fail-stop model.  Also excluded are rollback-recovery 

techniques that rely on special language constructs 

such as recovery blocks and transactions. 

Message-passing systems complicate rollback 

recovery because messages induce inter-process 

dependencies during failure-free operation.  Upon a 

failure of one or more processes in a system, these 

dependencies may force some of the processes that 

did not fail to roll back, creating what is commonly 

called  rollback propagation .  To see why rollback 

propagation occurs, consider the situation where a 

sender of a message  m  rolls back to a state that 

precedes the sending of  m .  The receiver of  m  must 

also roll back to a state that precedes m ’s receipt; 

otherwise, the states of the two processes would be  

inconsistent  because they would show that message  

m  was received without being sent, which is 

impossible in any correct failure-free execution.  

Under some scenarios, rollback propagation may 

extend back to the initial state of the computation, 

losing all the work performed before a failure.  This 

situation is known as the  domino effect [4].  

The domino effect may occur if each process takes its 

checkpoints independently—an approach known as 

independent  or uncoordinated checkpointing .  It is 

obviously desirable to avoid the domino effect and 
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therefore several techniques have been developed to 

prevent it.  One such technique is to perform 

coordinated checkpointing  in which processes 

coordinate their checkpoints in order to save a 

system-wide consistent state [8].  This consistent set 

of checkpoints can then be used to bound rollback 

propagation.  Alternatively, communication-induced 

checkpointing  forces each process to take 

checkpoints based on information piggybacked on 

the application messages it receives from other 

processes.  Checkpoints are taken such that a system-

wide consistent state always exists on stable storage, 

thereby avoiding the domino effect. 

These approaches discussed above implement 

checkpoint-based rollback recovery, which relies 

only on checkpoints to achieve fault-tolerance.  In 

contrast, log-based  rollback recovery combines 

checkpointing with logging of nondeterministic 

events. Log-based rollback recovery relies on the  

piecewise deterministic (PWD) assumption [2], 

which postulates that all nondeterministic events that 

a process executes can be identified and that the 

information necessary to replay each event during 

recovery can be logged in the event’s  determinant  

[4].  By logging and replaying the nondeterministic 

events in their exact original order, a process can 

deterministically recreate its pre-failure state even if 

this state has not been checkpointed.  Log-based 

rollback recovery in general enables a system to 

recover beyond the most recent set of consistent 

checkpoints.  It is therefore particularly attractive for 

applications that frequently interact with the  outside 

world , which consists of all input and output devices 

that cannot roll back.  Log-based rollback recovery 

has three flavors, depending on how the determinants 

are logged to stable storage.  In  pessimistic logging , 

the application has to block waiting for the 

determinant of each nondeterministic event to be 

stored on stable storage before the effects of that 

event can be seen by other processes or the outside 

world.  Pessimistic logging simplifies recovery but 

hurts failure-free performance.  In  optimistic 

logging, the application does not block, and 

determinants are spooled to stable storage 

asynchronously.  Optimistic logging reduces the 

failure-free overhead, but complicates recovery.  

Finally, in  causal logging, low failure-free overhead 

and simpler recovery are combined by striking a 

balance between optimistic and pessimistic logging. 

 

2. RELATED WORK 

2.1 System Model: 

A message-passing system consists of a fixed number 

of processes that communicate only through 

messages. Throughout this survey, we use N to 

denote the total number of processes in a system.  

Processes cooperate to execute a distributed 

application program and interact with the outside 

world by receiving and sending input and output 

messages, respectively.  Figure 1 shows a sample 

system consisting of three processes, where 

horizontal lines extending toward the right-hand side 

represent the execution of each process, and arrows 

between processes represent messages. 

 

2.2 Consistent system states 

A global state of a message-passing system is a 

collection of the individual states of all participating 

processes and of the states of the communication 

channels.  Intuitively, a consistent global state is one 

that may occur during a failure-free, correct 

execution of a distributed computation.  More 

precisely, a consistent system state is one in which if 

a process’s state reflects a message receipt, then the 

state of the corresponding sender reflects sending that 

message.  For example, Figure 2 shows two examples 

of global states—a consistent state in Figure 2(a), and 

an inconsistent state in Figure 2(b).  Note that the 

consistent state in Figure 2(a) shows message m1 to 

have been sent but not yet received.  This state is 

consistent, because it represents a situation in which 

the message has left the sender and is still traveling 

across the network.  On the other hand, the state in 

Figure 2(b) is inconsistent because process P2 is 

shown to have received m2 but the state of process 

P1 does not reflect sending it.  Such a state is 

impossible in any failure-free, correct computation.  

Inconsistent states occur because of failures.  For 

example, the situation shown in part (b) of Figure 2 

may occur if process  P1 fails after sending message  

m2 to  P2 and then restarts at the state shown in the 

figure.A fundamental goal of any rollback-recovery 
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protocol is to bring the system into a consistent state 

when inconsistencies occur because of a failure.  The 

reconstructed consistent state is not necessarily one 

that has occurred before the failure.  It is sufficient 

that the reconstructed state be one that  could have 

occurred before the failure in a failure-free, correct 

execution. 

 

2.3 In-Transit Messages  

In Figure 2(a), the global state shows that message  

m1  has been sent but not yet received.  We call such 

a message an in-transit  message.  When in-transit 

messages are part of a global system state, these 

messages do not cause any inconsistency.  However, 

depending on whether the system model assumes 

reliable communication channels, rollback-recovery 

protocols may have to guarantee the delivery of in-

transit messages when failures occur.  For example, 

the rollback-recovery protocol in Figure 3(a) assumes 

reliable communications, and therefore it must be 

implemented on top of a reliable communication 

protocol layer.  In contrast, the rollback-recovery 

protocol in Figure 3(b) does not assume reliable 

communications.  

Reliable communication protocols ensure the 

reliability of message delivery during failure-free 

executions.  They cannot, however, ensure by 

themselves the reliability of message delivery in the 

presence of process failures. For instance, if an in-

transit message is lost because the intended receiver 

has failed, conventional communication protocols 

will generate a timeout and inform the sender that the 

message cannot be delivered.  In a rollback-recovery 

system, however, the receiver will eventually 

recover.   Therefore, the system must mask the 

timeout from the application program at the sender 

process and must make in-transit messages available 

to the intended receiver process after it recovers, in 

order to ensure a consistent view of the reliable 

system .  On the other hand, if a system 

 

Figure3: 

 

model assumes unreliable communication channels, 

as in Figure 3(b), then the recovery protocol need not 

handle in-transit messages in any special way.  

Indeed, lost in-transit messages because of process 

failures cannot be distinguished from those caused by 

communication failures in an unreliable 

communication channel.  Therefore, the loss of in-

transit messages due to either communication or 

process failure is an event that can occur in any 

failure-free, correct execution of the system. 

2.4 Checkpointing Protocols and the Domino 

Effect  

In checkpointing protocols, each process periodically 

saves its state on stable storage. The saved state 

contains sufficient information to restart process 

execution.  A consistent global checkpoint  is a set of  

N local checkpoints, one from each process, forming 

a consistent system state. Any consistent global 

checkpoint can be used to restart process execution 

upon a failure.  Nevertheless, it is desirable to 

minimize the amount of lost work by restoring the 

system to the most recent consistent global 

checkpoint, which is called the  recovery line  [4][5].  

Processes may coordinate their checkpoints to form 

consistent states, or may take checkpoints 

independently and search for a consistent state during 

recovery out of the set of saved individual 

checkpoints.  The second style, however, can lead to 

the  domino effect  [4].  For example, Figure 4 shows 

an execution in which processes take their 

checkpoints—represented by black bars—without 

coordinating with each other.  Each process starts its 

execution with an initial checkpoint.  Suppose 

process P2 fails and rolls back to checkpoint C.  The 

rollback “invalidates” the sending of message m6, 

and so P1 must roll back to checkpoint B  to 

“invalidate” the receipt of that message.  Thus, the 

invalidation of message m 6 propagates the rollback 

of process P2 to process  P1, which in turn 
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“invalidates” message m7 and forces  P0 to roll back 

as well. 

 

Figure4: 

 

This cascaded rollback may continue and eventually 

may lead to the domino effect, which causes the 

system to roll back to the beginning of the 

computation, in spite of all the saved checkpoints.  In 

the example shown in Figure 5, cascading rollbacks 

due to the single failure of process P2 may result in a 

recovery line that consists of the initial set of 

checkpoints, effectively causing the loss of all the 

work done by all processes.  To avoid the domino 

effect, processes need either to coordinate their 

checkpoints so that the recovery line is advanced as 

new checkpoints are taken, or to combine 

checkpointing with event logging. 

2.5 Logging Protocols: 

Log-based rollback recovery uses checkpointing and 

logging to enable processes to replay their execution 

after a failure beyond the most recent checkpoint.  

This is useful when interactions with the outside 

world are frequent, since it enables a process to 

repeat its execution and be consistent with output 

sent to the outside world without having to take 

expensive checkpoints before sending such output.  

Additionally, log-based recovery generally is not 

susceptible to the domino effect, thereby allowing 

processes to use uncoordinated checkpointing if 

desired.  

Log-based recovery relies on the piecewise 

deterministic ( PWD) assumption.  Under this 

assumption, the rollback recovery protocol can 

identify all the nondeterministic events executed by 

each process, and for each such event, logs a 

determinant that contains all information necessary to 

replay the event should it be necessary during 

recovery. 

A state interval is recoverable if there is sufficient 

information to replay the execution up to that state 

interval despite any future failures in the system.  

Also, a state interval is stable  if the determinant of 

the nondeterministic event that started it is logged on 

stable storage [1].  A recoverable state interval is 

always stable, but the opposite is not always true [8].  

Figure 5 shows an execution in which the only 

nondeterministic events are message deliveries.  

Suppose that processes P 1 and P2 fail before logging 

the determinants corresponding to the deliveries of 

m6 and  m5, respectively, while all other 

determinants survive the failure.  Message m7 

becomes an orphan message  because process  P2 

cannot guarantee the regeneration of the same  m6 

during recovery, and  P1 cannot guarantee the 

regeneration of the same m7 without the original m6.  

As a result, the surviving process  P0 becomes an  

orphan process and is forced to roll back 

 

   Figure 5:  

as well.  States  X ,  Y and Z form the maximum 

recoverable state [8], i.e., the most recent recoverable 

consistent system state.  Processes  P0 and P2 roll 

back to checkpoints  A  and  C, respectively, and 

replay the deliveries of messages  m4 and  m2, 

respectively, to reach states  X  and  Z.   Process P1 

rolls back to checkpoint  B  and replays the deliveries 

of m1 and  m3 in their original order to reach state  

Y.  During recovery, log-based rollback-recovery 

protocols force the execution of the system to be 

identical to the one that occurred before the failure, 

up to the maximum recoverable state.  Therefore, the 

system always recovers to a state that is consistent 

with the input and output interactions that occurred 

up to the maximum recoverable state. 

2.6  Checkpoint-Based Rollback Recovery  

Upon a failure, checkpoint-based rollback recovery 

restores the system state to the most recent consistent 

set of checkpoints, i.e. the recovery line [4][5].  It 

does not rely on the PWD assumption, and so does 

not need to detect, log, or replay nondeterministic 
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events.  Checkpoint-based protocols are therefore less 

restrictive and simpler to implement than log-based 

rollback recovery.  But checkpoint-based rollback 

recovery does not guarantee that pre-failure 

execution can be deterministically regenerated after a 

rollback.  Therefore, checkpoint-based rollback 

recovery is ill suited for applications that require 

frequent interactions with the outside world, since 

such interactions require that the observable behavior 

of the system during recovery be the same as during 

failure-free operation.    

Checkpoint-based rollback-recovery techniques can 

be classified into three categories:  uncoordinated 

checkpointing ,  coordinated checkpointing , and  

communication-induced checkpointing.  We examine 

each category in detail.  

2.6.1 Uncoordinated Checkpointing  
Uncoordinated checkpointing allows each process 

maximum autonomy in deciding when to take 

checkpoints.  The main advantage of this autonomy is 

that each process may take a checkpoint when it is 

most convenient.  For example, a process may reduce 

the overhead by taking checkpoints when the amount 

of state information to be saved is small [5].  But 

there are several disadvantages.  First, there is the 

possibility of the domino effect, which may cause the 

loss of a large amount of useful work, possibly all the 

way back to the beginning of the computation.  

Second, a process may take a useless checkpoint that 

will never be part of a global consistent state.  

Useless checkpoints are undesirable because they 

incur overhead and do not contribute to advancing 

the recovery line.  Third, uncoordinated 

checkpointing forces each process to maintain 

multiple checkpoints, and to invoke periodically a 

garbage collection algorithm to reclaim the 

checkpoints that are no longer useful.  Fourth, it is 

not suitable for applications with frequent output 

commits because these require global coordination to 

compute the recovery line, negating much of the 

advantage of autonomy. 

 
2.6.2 Coordinated Checkpointing 

Coordinated checkpointing requires processes to 

orchestrate their checkpoints in order to form a 

consistent global state. Coordinated checkpointing 

simplifies recovery and is not susceptible to the 

domino effect, since every process always restarts 

from its most recent checkpoint. Also, coordinated 

checkpointing requires each process to maintain only 

one permanent checkpoint on stable storage, reducing 

storage overhead and eliminating the need for 

garbage collection. Its main disadvantage, however, 

is the large latency involved in committing output, 

since a global checkpoint is needed before output can 

be committed to the outside world. 

 

A straightforward approach to coordinated 

checkpointing is to block communications while the 

checkpointing protocol executes [2]. A coordinator 

takes a checkpoint and broadcasts a request message 

to all processes, asking them to take a checkpoint. 

When a process receives this message, it stops its 

execution, flushes all the communication channels, 

takes a tentative checkpoint, and sends an 

acknowledgment message back to the coordinator. 

After the coordinator receives acknowledgments 

from all processes, it broadcasts a commit message 

that completes the two-phase checkpointing protocol. 

After receiving the commit message, each process 

removes the old permanent checkpoint and 

atomically makes the tentative checkpoint permanent. 

The process is then free to resume execution and 

exchange messages with other processes. This 

straightforward approach, however, can result in 

large overhead, and therefore non-blocking 

checkpointing schemes are preferable [8][7]. 

 
2.6.3 Communication-induced Checkpointing 

Communication-induced checkpointing avoids the 

domino effect while allowing processes to take some 

of their checkpoints independently [8]. However, 

process independence is constrained to guarantee the 

eventual progress of the recovery line, and therefore 

processes may be forced to take additional 

checkpoints. The checkpoints that a process takes 

independently are called local checkpoints, while 

those that a process is forced to take are called forced 

checkpoints. Communication-induced checkpointing 

piggybacks protocol-related information on each 

application message. The receiver of each application 

message uses the piggybacked information to 

determine if it has to take a forced checkpoint to 

advance the global recovery line. The forced 

checkpoint must be taken before the application may 

process the contents of the message, possibly 

incurring high latency and overhead. It is therefore 

desirable in these systems to reduce the number of 

forced checkpoints to the extent possible. In contrast 

with coordinated checkpointing, no special 

coordination messages are exchanged. 
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2.7 Log-Based Rollback Recovery 

As opposed to checkpoint-based rollback recovery, 

log-based rollback recovery makes explicit use of the 

fact that a process execution can be modeled as a 

sequence of deterministic state intervals, each starting 

with the execution of a nondeterministic event [7]. 

Such an event can be the receipt of a message from 

another process or an event internal to the process. 

 

Log-based rollback-recovery protocols guarantee that 

upon recovery of all failed processes, the system does 

not contain any orphan process, i.e., a process whose 

state depends on a nondeterministic event that cannot 

be reproduced during recovery. The way in which a 

specific protocol implements this condition affects 

the protocol’s failure-free performance overhead, 

latency of output commit, and simplicity of recovery 

and garbage collection, as well as its potential for 

rolling back correct processes. There are three flavors 

of these protocols: 

 

 Pessimistic log-based rollback-recovery 

protocols guarantee that orphans are never 

created due to a failure. These protocols 

simplify recovery, garbage collection and 

output commit, at the expense of higher 

failure-free performance overhead. 

 Optimistic log-based rollback-recovery 

protocols reduce the failure-free 

performance overhead, but allow orphans to 

be created due to failures. The possibility of 

having orphans complicates recovery, 

garbage collection and output commit. 

 Causal log-based rollback-recovery 

protocols attempt to combine the advantages 

of low performance overhead and fast output 

commit, but they may require complex 

recovery and garbage collection. 

 
2.8 Combining Log-Based Recovery with 

Coordinated Checkpointing 

Log-based recovery has been traditionally presented 

as a mechanism to allow the use of uncoordinated 

checkpointing with no domino effect. But a system 

may also combine event logging with coordinated 

checkpointing, yielding several benefits with respect 

to performance and simplicity [2][4]. These benefits 

include those of coordinated checkpointing—such as 

the simplicity of recovery and garbage collection—

and those of logbased recovery—such as fast output 

commit. Most prominently, this combination obviates 

the need for flushing the volatile message logs to 

stable storage in a sender-based logging 

implementation. Thus, there is no need for 

maintaining large logs on stable storage, resulting 

lower performance overhead and simpler 

implementations. The combination of coordinated 

checkpointing and message logging has been shown 

to outperform one with uncoordinated checkpointing 

and message logging [2]. Therefore, the purpose of 

logging should no longer be to allow uncoordinated 

checkpointing. Rather, it should be the desire for 

enabling fast output commit for those applications 

that need this feature. 

 

3 Conclusion 
We have reviewed and compared different 

approaches to rollback recovery with respect to a set 

of properties including the assumption of piecewise 

determinism, performance overhead, storage 

overhead, ease of output commit, ease of garbage 

collection, ease of recovery, freedom from domino 

effect, freedom from orphan processes, and the extent 

of rollback. These approaches fall into two broad 

categories: checkpointing protocols and log-based 

recovery protocols. 

Checkpointing protocols require the processes to take 

periodic checkpoints with varying degrees of 

coordination. At one end of the spectrum, 

coordinated checkpointing requires the processes to 

coordinate their checkpoints to form global consistent 

system states. Coordinated checkpointing generally 

simplifies recovery and garbage collection, and yields 

good performance in practice. At the other end of the 

spectrum, uncoordinated checkpointing does not 

require the processes to coordinate their checkpoints, 

but it suffers from potential domino effect, 

complicates recovery, and still requires coordination 

to perform output commit or garbage collection. 

Between these two ends are communication-induced 

checkpointing schemes that depend on the 

communication patterns of the applications to trigger 

checkpoints. These schemes do not suffer from the 

domino effect and do not require coordination. 

Recent studies, however, have shown that the 

nondeterministic nature of these protocols 

complicates garbage collection and degrades 

performance.  

 

Log-based rollback recovery based on the PWD 

assumption is often a natural choice for applications 

that frequently interact with the outside world. Log-

based recovery allows efficient output commit, and 

has three flavors, pessimistic, optimistic, and causal. 
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The simplicity of pessimistic logging makes it 

attractive for practical applications if a high failure-

free overhead can be tolerated. This form of logging 

simplifies recovery, output commit, and protect 

surviving processes from having to roll back. These 

advantages have made pessimistic logging attractive 

in commercial environment where simplicity and 

robustness are necessary. Causal logging can be 

employed to reduce the overhead while still 

preserving the properties of fast output commit and 

orphan-free recovery. Alternatively, optimistic 

logging reduces the overhead further at the expense 

of complicating recovery and increasing the extent of 

rollback upon a failure. 
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